Discriminative locality-constrained sparse representation for robust face recognition
نویسندگان
چکیده
منابع مشابه
Learning locality-constrained collaborative representation for robust face recognition
The model of low-dimensional manifold and sparse representation are two well-known concise models that suggest each data can be described by a few characteristics. Manifold learning is usually investigated for dimension reduction by preserving some expected local geometric structures from the original space to a low-dimensional one. The structures are generally determined by using pairwise dist...
متن کاملLocality Constrained Joint Dynamic Sparse Representation for Local Matching Based Face Recognition
Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limit...
متن کاملRobust Face Recognition via Sparse Representation
In this project, we implement a robust face recognition system via sparse representation and convex optimization. We treat each test sample as sparse linear combination of training samples, and get the sparse solution via L1-minimization. We also explore the group sparseness (L2-norm) as well as normal L1-norm regularization.We discuss the role of feature extraction and classification robustnes...
متن کاملDiscriminative Local Sparse Representations for Robust Face Recognition
A key recent advance in face recognition models a test face image as a sparse linear combination of a set of training face images. The resulting sparse representations have been shown to possess robustness against a variety of distortions like random pixel corruption, occlusion and disguise. This approach however makes the restrictive (in many scenarios) assumption that test faces must be perfe...
متن کاملInnovative Sparse Representation Algorithms for Robust Face Recognition
In this paper, we propose two innovative and computationally efficient algorithms for robust face recognition, which extend the previous Sparse Representationbased Classification (SRC) algorithm proposed by Wright et al. (2009). The two new algorithms, which are designed for both batch and online modes, operate on matrix representation of images, as opposed to vector representation in SRC, to a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1780/1/012034